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Abstract 19 

We recently found that young cigarette smokers display cutaneous vascular dysfunction 20 

relative to non-smokers, which is partially due to reduced nitric oxide (NO) synthase 21 

(NOS)-dependent vasodilation.  In this study, we tested the hypothesis that reducing 22 

oxidative stress improves NO bioavailability, enhancing cutaneous vascular function in 23 

young smokers. Ten healthy young male smokers, who had smoked for 6.3±0.7 years 24 

with an average daily consumption of  9.1±0.7 cigarettes, were tested.  Cutaneous 25 

vascular conductance (CVC) during local heating to 42ºC at a rate of 0.1ºC/sec was 26 

evaluated as laser-Doppler flux divided by mean arterial blood pressure and normalized 27 

to maximal CVC, induced by local heating to 44ºC plus sodium nitroprusside 28 

administration. We evaluated plateau CVC during local heating, which is known to be 29 

highly dependent on NO, at four intradermal microdialysis sites: 1) Ringer’s (control), 2) 30 

10μM 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol), a superoxide dismutase 31 

mimetic, 3) 10mM Nω-Nitro-L-arginine  (L-NNA), a non-specific NOS inhibitor, and 4) 32 

a combination of 10μM Tempol and 10mM L-NNA.  Tempol increased the plateau CVC 33 

compared with the Ringer’s site (90.0±2.3 vs. 77.6±3.9%max, P=0.028). Plateau CVC at 34 

the combination site (56.8±4.5%max) was lower than the Ringer’s site (P<0.001), and 35 

was not different from the L-NNA site (55.1±4.6%max) (P=0.978), indicating the 36 

Tempol effect was exclusively NO-dependent.  These data suggest that in young smokers, 37 

reducing oxidative stress improves cutaneous thermal hyperemia to local heating by 38 

enhancing NO production.  39 

 40 

Key words: tobacco, reactive oxygen species, free radicals, microcirculation, skin,  41 
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Introduction 42 

    Almost 6 million people die from tobacco use and exposure each year (53), and 43 

the majority of tobacco-related deaths are due to cardiovascular disease (11).  Indeed, 44 

chronic exposure to cigarette smoking changes the structure and function of human 45 

conduit arteries (45).  Oxidative stress is suspected to be a major contributor to chronic 46 

cigarette smoking-induced vascular alterations, as reducing oxidative stress with 47 

antioxidants (e.g., vitamin C) in smokers improves conduit artery vascular function, as 48 

evaluated by non-invasive flow-mediated dilation (FMD) (41, 43, 50) or by intra-arterial 49 

administration of the endothelium-dependent vasodilators, such as acetylcholine (ACh) 50 

(17-19) and bradykinin (17).  Furthermore, antioxidant-induced improvements in conduit 51 

artery vascular function in smokers are not observed when administered in conjunction 52 

with nitric oxide (NO) synthase (NOS) inhibition (31), suggesting that oxidative stress 53 

impairs conduit artery function by reducing NO bioavailability.   54 

   In addition to human conduit artery function, chronic cigarette smoking impairs 55 

function of the human microcirculation, such as the skin (9, 10, 14, 42).  Given that 56 

microvascular dysfunction is a crucial step in the complications that lead to 57 

cardiovascular disease (1, 34, 38), exploring the mechanistic underpinnings of impaired 58 

microvascular function in smokers is important; however, few investigators have studied 59 

this issue.  We recently reported that young smokers have an impaired cutaneous 60 

vasodilatory response to administration of ACh compared with non-smokers, which was 61 

partially due to attenuated NOS-dependent vasodilation (14).  Given that oxidative stress 62 

reduces NO bioavailability in the conduit arteries of smokers (31), reducing oxidative 63 

stress may also improve NOS-dependent vasodilation in the cutaneous microcirculation 64 



 

4 
 

of smokers, thereby enhancing vascular function.  However, this has not been directly 65 

tested.   66 

   Using the above information as background, we hypothesized that Tempol (a 67 

superoxide dismutase mimetic) would improve cutaneous vascular function through 68 

enhancing NOS-dependent vasodilation in young smokers.  As a test of cutaneous 69 

vascular function, we evaluated cutaneous thermal hyperemia to local heating to 42ºC at 70 

a rate of 0.1ºC/sec.  This test was selected as plateau vasodilation during local heating is 71 

predominantly (~50-70%) mediated by NO (3, 5, 13, 20, 32, 39, 40, 49).   72 

 73 

Materials and Methods 74 

   Subjects.  This study was approved by the Institutional Review Board at The 75 

University of Oregon and conformed to the guidelines set forth by the Declaration of 76 

Helsinki.  Verbal and written informed consent was obtained from all subjects prior to 77 

their participation in the study.  Smokers were defined as having smoked for at least 1 78 

year with an average daily cigarette consumption ≥ 6.  We recruited ten healthy young 79 

(19-26 years of age) smokers who had no history of hypertension, heart disease, diabetes, 80 

or autonomic disorders.  This is important since advanced age (22, 26, 35, 40), 81 

hypertension (46), and disease status (e.g., postural tachycardia syndrome) (47, 48) are 82 

known to independently impair skin microvascular function.  All subjects were not 83 

currently taking prescription medications.  All subjects abstained from taking over-the-84 

counter medications (including non-steroidal anti-inflammatory agents and vitamins), 85 

alcohol, and caffeine for at least 24h before the study.  They also refrained from heavy 86 

exercise the night before the study, and cigarette smoking for at least 12 h before the 87 
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study to avoid any acute effects of cigarette smoking on skin blood flow regulation (9, 28, 88 

52).   89 

   Instrumentation:  Upon arrival at the laboratory, subjects voided their bladder and 90 

body weight and height were measured.  Subjects were placed in a semi-recumbent 91 

position and instrumented with four microdialysis fibers (MD2000, Bioanalytical 92 

Systems, West Lafayette, IN, USA) (30KDa cutoff, 10mm membrane) on the ventral side 93 

of the forearm in the dermal layer of the skin.  A 25-gauge needle was first inserted into 94 

the unanesthetized skin using aseptic technique with at least 4.0cm between each site.  95 

The entry and exit points were about ~2.5cm apart.  The microdialysis fiber was then 96 

threaded through the lumen of the needle, after which the needle was withdrawn leaving 97 

the fiber in place.  Microdialysis fibers were secured with tape.  Lactated Ringer’s 98 

solution was perfused through each microdialysis fiber at a rate of 2.0µl/min (CMA 1025 99 

microdialysis pump, CMA Microdialysis AB, Kista, Sweden) until the start of drug 100 

infusions (see below).   101 

   Experimental protocol:  Once the trauma caused by microdialysis fiber placement 102 

had dissipated (~60-90min), the experimental protocol began.  Microdialysis fibers were 103 

randomly assigned to receive 1) Ringer’s (control), 2) 10μM 4-hydroxy-2,2,6,6-104 

tetramethylpiperidine-1-oxyl (Tempol, EMD Millipore Chemicals, Billerica, MA, USA) 105 

to reduce superoxide (O2
•-), 3) 10mM Nω-Nitro-L-arginine  (L-NNA; Sigma-Aldrich Co., 106 

St. Louis, MO, USA) to non-selectively inhibit NOS and thus NO production, and 4) 107 

10μM Tempol plus 10 mM L-NNA.  Drug concentrations were selected as the minimum 108 

dose required for maximal effects, as reported in previous studies (36, 37).  All 109 

pharmacological agents were dissolved in lactated Ringer’s solution.  All drugs were 110 
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infused continuously at a rate of 2.0µl/min (CMA 102 Microdialysis Pump; CMA 111 

Microdialysis AB, Kista, Sweden) until the end of local heating to 42ºC.  To ensure 112 

adequate drug effects, all pharmacological agents were perfused for at least 75min before 113 

the start of local heating.   114 

   Following 75+min of drug infusion, baseline was recorded for at least 10min 115 

while skin temperature was held constant at 33ºC (Skin Heater/Temperature Monitor 116 

SHO2, Moor Instruments, Devon, UK).  Thereafter, local heating of the skin to 42ºC at a 117 

rate of 0.1ºC/sec was applied to all skin sites to induce cutaneous vasodilation.  Once skin 118 

vasodilation reached a plateau (25-35min after initiation of heating), local skin 119 

temperature was further elevated to 44ºC at a rate of 0.1ºC/sec with an administration of 120 

56mM sodium nitroprusside (SNP; Nitropress, Ciba Pharmaceuticals, East Hanover, NJ, 121 

USA) at a rate of 2.0µl/min to achieve maximal vasodilation.   122 

 Measurements: Arterial blood pressure was measured via automated brachial 123 

oscillation (Dinamap ProCare 100, GE Medical Systems, Tampa, FL,USA) throughout 124 

the protocol.  Mean arterial blood pressure (MAP) was calculated as diastolic arterial 125 

blood pressure plus one-third pulse pressure.  To obtain an index of skin blood flow, 126 

cutaneous red blood cell flux was measured with a single-point laser-Doppler flowmetry 127 

probe seated in the center of the local heater over each microdialysis fiber.  Cutaneous 128 

vascular conductance (CVC) was evaluated as cutaneous red blood cell flux divided by 129 

MAP.   All CVC data were expressed as percentage of maximal CVC to minimize the 130 

effect of site-to-site heterogeneity in the level of skin blood flow (38).  Data were 131 

recorded and stored on a computer using Windaq data acquisition software (Dataq 132 

Instruments, Akron, OH).  Figure 1 displays the CVC response to local heating, averaged 133 
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across all subjects, which was characterized as follows.  Baseline CVC was determined 134 

by taking an average CVC at least over 3min before heating.  Upon initiation of local 135 

heating, CVC rapidly increased and exhibited an initial peak.  Then following a brief 136 

nadir, CVC gradually increased and reached a stable plateau.  The initial peak and nadir 137 

CVC were determined by taking averaged CVC over 30sec, and the plateau and maximal 138 

CVC were determined from averaged CVC over at least 2 min.  We evaluated the 139 

difference in plateau CVC between the Tempol and Tempol plus L-NNA sites as an 140 

index of NOS-dependent vasodilation with Tempol.  Similarly, the difference in plateau 141 

CVC between the Ringer’s and L-NNA sites was evaluated as an index of NOS-142 

dependent vasodilation without Tempol.   143 

   Statistical analyses:  A two-way repeated measures analysis of variance 144 

(ANOVA) was conducted with factors of drug (Ringer’s, Tempol, L-NNA, and 145 

combination of Tempol and L-NNA) and phase of response (baseline, initial peak, nadir, 146 

plateau, and maximal periods) for absolute (mV/MAP・100) and relative (%max) CVC.  147 

We employed two-way ANOVA rather than one-way ANOVA to consider a potential 148 

interaction between drug and phase of response.  When a significant main effect or 149 

interaction was detected, significant differences between paired variables across drug 150 

sites were determined by Tukey’s honestly significant difference post hoc test.  Two-151 

tailed paired t-test was used to compare the difference in plateau CVC between the 152 

Tempol and Tempol plus L-NNA sites with the difference in plateau CVC between the 153 

Ringer’s and L-NNA sites.  The level of significance was set at 0.05.  Values are 154 

presented as mean± standard error (SE).    155 

 156 
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Results 157 

Characteristics of subjects. The subjects were 22.5±0.7 years of age, with an 158 

average body mass index of 23.8±0.8kg.m-2.   They had smoked for 6.3±0.7 years with an 159 

average daily consumption of 9.1±0.7cigarettes.  Their systolic, diastolic, and mean 160 

arterial pressures were 112.9±2.7mmHg, 63.9±1.8mmHg, and 80.2±1.7mmHg, 161 

respectively.  Note that their body mass indices and arterial blood pressures were within 162 

healthy ranges.   163 

Cutaneous variables.  There was an interaction between drug and phase of 164 

response on CVC represented as both absolute or %max value (both P<0.001).  Plateau 165 

CVC at the Tempol site was greater than that at the Ringer’s site (Figure 1).  Plateau 166 

CVC at the L-NNA site was reduced relative to the Ringer’s site (Figure 1).  Plateau 167 

CVC at the site which received combined Tempol and L-NNA was lower compared with 168 

the Ringer’s site, and was not different from the value at the L-NNA site (P=0.978) 169 

(Figure 1).  The difference in plateau CVC between the Tempol and Tempol plus L-NNA 170 

sites tended to be higher compared with the difference in plateau CVC between the 171 

Ringer’s and L-NNA sites (31.5±4.1 vs. 19.2±6.7%max, P=0.163). 172 

Baseline CVC at the Ringer’s site did not differ from that at the Tempol 173 

(P=0.999), L-NNA (P=0.948), and Tempol+L-NNA (P=0.999) sites (Figure 1).  Initial 174 

peak CVC at the Ringer’s site was not different from that at the Tempol (P=0.455), L-175 

NNA (P=0.095), and Tempol+L-NNA (P=0.250) sites (Figure 1).  Absolute maximal 176 

CVC (unit, mV/MAP・100) at the Ringer’s site (246±25) was not different from the 177 

Tempol (314±52, P=0.180), L-NNA (277±34, P=0.790), and Tempol+L-NNA (292±178 

22, P=0.514) sites.  Based on these data, we calculated the minimum sample sizes 179 
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required to produce a significant level of 0.05 with 80% power, which demonstrated we 180 

would need 18 subjects for the difference in baseline CVC between the Ringer’s and L-181 

NNA sites to be significant, 28 subjects for the difference in initial peak CVC between 182 

the Ringer’s and Tempol sites to be significant, 28 subjects for the difference in absolute 183 

maximal CVC between the Ringer’s and Tempol sites to be significant, and 23 subjects 184 

for the difference in absolute maximal CVC between the Ringer’s and Tempol+L-NNA 185 

sites to be significant.  Relative to the Ringer’s site, nadir CVC at the Tempol site was 186 

higher, while that at the L-NNA and combination sites were lower (Figure 1) 187 

 188 

Discussion 189 

   We are the first to investigate how Tempol, a superoxide dismutase mimetic, 190 

affects the cutaneous vascular response to local heating in young smokers.  We also 191 

employed Nω-Nitro-L-arginine (L-NNA, NOS inhibitor) to evaluate whether Tempol-192 

induced improvements in microvascular function was through improved NO 193 

bioavailability.  Our main findings were that 1) Tempol enhanced the plateau phase of 194 

cutaneous vasodilation to local heating to 42ºC, 2) the plateau at the combination site 195 

(Tempol and L-NNA) was lower than the Ringer’s site, but was comparable to the L-196 

NNA site.  These results suggest that in young smokers, reducing oxidative stress in the 197 

microvasculature improves cutaneous thermal hyperemia to local heating through NO-198 

dependent mechanisms.   199 

   Oxidative stress.  Accumulating evidence supports the concept that smokers have 200 

impaired cutaneous vascular function compared with non-smokers (9, 10, 14, 42).  In line 201 

with this, plateau CVC in the young smokers of the present study was attenuated 202 
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compared with that in the young non-smokers of previous studies in which the same 203 

heating protocol was employed (Table 1) (3, 5, 16, 21, 33, 49, 54).  In the present study, 204 

we found that Tempol significantly improved plateau CVC compared with the Ringer’s 205 

site (Figure 1), up to a similar level as the plateau in those same studies in non-smokers 206 

(~90%), suggesting that oxidative stress is a major factor contributing to the impaired 207 

cutaneous vascular function in young smokers.     208 

   On the other hand, in healthy non-smokers, antioxidants such as vitamin C do not 209 

affect vascular function, as evaluated by FMD or ACh-induced vasodilation in forearm 210 

conduit arteries (17, 19, 41, 43), as well as by the cutaneous vasodilatory response during 211 

whole-body heating at rest (23, 25).  More relevant to the present study, Medow et al. 212 

(36) showed in healthy young non-smokers that Tempol did not affect plateau CVC 213 

during the same local heating protocol as was used in the present study.  The lack of an 214 

effect of antioxidants in healthy, non-smoking subjects is not surprising, as healthy 215 

humans are expected not to have significant oxidative stress.  Medow et al. (36) further 216 

showed that Tempol restored plateau CVC when oxidative stress was induced in healthy 217 

non-smokers by infusing angiotensin II, thus suggesting an antioxidative role of Tempol 218 

during local heating.  However, it should be considered that Tempol may have non-219 

antioxidative effects.  For example, Tempol-mediated opening of ATP-sensitive 220 

potassium (KATP) channels has been reported in rats with systemic MAP changes (8) and 221 

opening of calcium-activated potassium (KCa) channels has been reported in mesenteric 222 

arterial smooth muscle of rats (55). However, these effects are unlikely to have occurred 223 

in the present study focusing on human skin blood flow regulation in smokers as no NO-224 

independent Tempol effects were observed, as discussed below.  225 
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   NOS pathway.  An impaired NOS-dependent cutaneous vasodilation in smokers is 226 

suggested by our previous study, which employed ACh administration (14), and by the 227 

fact that, in the present study, NOS inhibition reduced plateau CVC during local heating 228 

to a lesser extent than what has previously been reported in healthy young non-smokers 229 

(19 vs. 33-72 %max) (3, 5, 13, 39, 40).  Given that oxidative stress generally reduces NO 230 

bioavailability, it is plausible that in the present study, plateau CVC was improved with 231 

Tempol administration through restoring NOS-dependent vasodilation.  This notion is 232 

strongly supported by our observation that there was no difference in plateau CVC 233 

between the L-NNA and Tempol+L-NNA sites (Figure 1).  Also, the difference in 234 

plateau CVC between the Tempol and Tempol+L-NNA sites (an index of NOS-235 

dependent vasodilation with Tempol) tended to be higher as compared to the difference 236 

in plateau CVC between the Ringer’s and L-NNA sites (an index of NOS-dependent 237 

vasodilation without Tempol) (31.5±4.1 vs. 19.2±6.7%max, P=0.163).   238 

   Possible mechanism(s) for how Tempol improves NO bioavailability.   Cigarette 239 

smoking causes oxidative stress as a direct effect of the compounds within cigarette 240 

smoke itself (44).  For example, the semiquinone radical in the cigarette tar yields O2
•- 241 

(44).  Additionally, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, 242 

which produces O2•-, is directly activated by both nicotine, as shown in rat pial arterioles 243 

(12), and by stable thiol-reactive agent, as indicated in bovine, human and rat pulmonary 244 

arteries (29).  O2
•- easily binds with NO to produce peroxynitrite (ONOO-), thus reducing 245 

NO bioavailability. Additionally, ONOO- depletes tetrahydrobiopterin (BH4), an essential 246 

cofactor for endothelial NOS (eNOS).  This results in an increase in uncoupled eNOS, 247 

which then procures O2
•- instead of NO (51), further reducing NO bioavailability.  By 248 
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removing O2
•-, preventing it from binding with NO, and reducing uncoupled eNOS, 249 

Tempol leads to higher NO bioavailability and thus improved plateau CVC. Moreover, 250 

the reaction of O2
•- and Tempol results in the production of hydrogen peroxide (H2O2), 251 

which may be another mechanism by which Tempol improves plateau CVC.  For 252 

example, scavenging of H2O2 with ebselen attenuates plateau CVC during local heating 253 

(36).  Additionally, H2O2 can activate KCa channels, as shown in vascular smooth muscle 254 

of pig coronary arteries (2). Vasodilation via KCa channels contributes substantially to the 255 

plateau (5).  256 

   Limitations.  Tempol scavenges O2
•-, but not other reactive oxygen species.  Other 257 

reactive oxygen species, such as H2O2 and hypochlorite (HOCl) may reduce NO 258 

bioavailability, as reported in porcine aortic endothelial cells (30), thus contributing to 259 

attenuated plateau CVC during local heating in the skin of young smokers.   260 

Only male subjects were included in this study. Thus, our conclusions cannot be 261 

applied to females.  The female sex hormones may be cardio-protective against the 262 

effects of chronic smoking, as reflected by the fact that carotid and femoral artery wall 263 

thickness is greater (15) and conduit artery FMD is lower (6) in male smokers, but not in 264 

female smokers compared with former or never smokers.  Furthermore, the female sex 265 

hormones enhance cutaneous thermal hyperemia to local heating (4, 7).  Therefore, the 266 

effects of chronic cigarette smoking on cutaneous thermal hyperemia may be different 267 

between males and females and/or may be modulated by the levels of the female sex 268 

hormones. Further studies are warranted to address these issues.     269 

Absolute maximal CVC at the Tempol and Tempol+L-NNA sites tended to be 270 

higher relative to that at the Ringer’s site, though it was not significant due to limited 271 
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sample size.  Reduced maximal cutaneous vasodilatory capacity has been reported in 272 

young (14) and older (10) smokers relative to non-smoking counterparts.  Our results 273 

suggest this may be due to oxidative stress, but further studies are required to flush that 274 

out.   275 

For this study we chose not to study a subset of non-smokers, based on the 276 

number of studies showing no benefit of antioxidant administration on vascular responses 277 

in healthy, young non-smokers. Although doing so would have allowed us to make 278 

comparisons between smokers and non-smokers, we decided to specifically focus this 279 

study on investigating whether Tempol would improve cutaneous vascular function in 280 

young smokers.   281 

Perspectives.  Microvascular dysfunction may be a crucial step in the 282 

complications leading to cardiovascular disease, and can be detected in the early stages of 283 

disease progression in the cutaneous circulation (24, 27, 38).  The present study shows 284 

that impaired cutaneous microvascular function in young smokers is caused by oxidative 285 

stress in a similar fashion as is observed in aging (25).  As such, chronic cigarette 286 

smoking has been suggested to cause a premature aging effect.   Based on our results, we 287 

speculate that, reducing oxidative stress in young smokers may potentially reduce the 288 

premature aging effect of chronic cigarette smoking on microvascular function, which in 289 

turn, may prevent or delay smoking-related cardiovascular disease and mortality.   290 
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Figure Legend 471 

Figure 1:  Averaged time-course changes in cutaneous vascular conductance during local 472 

heating.  Baseline, initial peak, nadir, and plateau cutaneous vascular conductance 473 

obtained from individuals were averaged and compared across the four drug sites.   474 

Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a superoxide dismutase 475 

mimetic; L-NNA (NG-nitro-L-arginine), a non-specific nitric oxide synthase inhibitor; 476 

Time 0 indicates initiation of local heating.   477 

 478 

 479 
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Table 1  Comparison of averaged plateau cutaneous vascular conductance (CVC) during local heating at the control site between young smokers and non-
smokers 

Subject group Author Plateau CVC Comment    

  (year) (%max)     

Young smokers  Present study 77     

        

Young non-smokers  Hodges & Sparks (2013) 86-90 at a rate of 0.5 ºC/10sec   

  Brunt & Minson (2012) 84-88     

  Bruning et al. (2012) 95     

  Greaney et al. (2012) 93     

  Wong & Fieger (2010) 92     
  Kellogg et al. (2008) 85 local heating to 41.5ºC at a rate of 0.6ºC/min 

  Stewart et al. (2008) 91     

All of the above studies employed local heating to 42 ºC at a rate of 0.1ºC/sec unless otherwise indicated.   
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