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Oxidative stress in autism
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Abstract

Autism is a severe developmental disorder with poorly understood etiology. Oxidative stress in autism has been studied at the membrane
level and also by measuring products of lipid peroxidation, detoxifying agents (such as glutathione), and antioxidants involved in the defense
system against reactive oxygen species (ROS). Lipid peroxidation markers are elevated in autism, indicating that oxidative stress is increased
in this disease. Levels of major antioxidant serum proteins, namely transferrin (iron-binding protein) and ceruloplasmin (copper-binding
protein), are decreased in children with autism. There is a positive correlation between reduced levels of these proteins and loss of previously
acquired language skills in children with autism. The alterations in ceruloplasmin and transferrin levels may lead to abnormal iron and copper
metabolism in autism. The membrane phospholipids, the prime target of ROS, are also altered in autism. The levels of phosphatidylethanolamine
(PE) are decreased, and phosphatidylserine (PS) levels are increased in the erythrocyte membrane of children with autism as compared to

their unaffected siblings. Several studies have suggested alterations in the activities of antioxidant enzymes such as superoxide dismutase,
glutathione peroxidase, and catalase in autism. Additionally, altered glutathione levels and homocysteine/methionine metabolism, increased
inflammation, excitotoxicity, as well as mitochondrial and immune dysfunction have been suggested in autism. Furthermore, environmental
and genetic factors may increase vulnerability to oxidative stress in autism. Taken together, these studies suggest increased oxidative stress
in autism that may contribute to the development of this disease. A mechanism linking oxidative stress with membrane lipid abnormalities,
inflammation, aberrant immune response, impaired energy metabolism and excitotoxicity, leading to clinical symptoms and pathogenesis of
autism is proposed.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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Autism is a severe neurodevelopmental disorder with
onset prior to 3 years of age [1]. It is a heterogeneous disorder,
both etiologically and phenotypically. Autism is a behav-
iorally defined disorder and is classified under the pervasive
developmental disorders (PDDs). PDDs are a group of dis-
orders that involve a combination of impairments in commu-
nication, reciprocal social interactions, and stereotyped pat-
terns of interest/behavior. PDDs include autism, Asperger’s
syndrome (a similar condition that is not associated with
language delay or general intellectual impairments), Rett’s
disorder, Childhood disintegrative disorder, and PDD—not
otherwise specified.

While the cause of autism remains elusive, autism is
considered a mutifactorial disorder that is influenced by
genetic, environmental, and immunological factors as well
as increased vulnerability to oxidative stress. No single gene

Hydrogen peroxide (H2O2) reacts with reduced transition
metals such as iron, via the Fenton reaction, to produce the
highly reactive hydroxyl radical [39]. Most toxic effects are
due to hydroxyl radical formation, which also initiates lipid
peroxidation [39]. Some endogenous enzymes such as xan-
thine oxidase (XO), NO synthase, and monoamine oxidase
(MAO) can directly produce ROS [36,37,40]. Normally, the
ROS within the cells are neutralized by antioxidant defense
mechanisms. Superoxide dismutase (SOD), catalase, and glu-
tathione peroxidase (GPx) are the primary enzymes involved
in direct elimination of ROS, whereas glutathione reduc-
tase and glucose-6-phosphate dehydrogenase are secondary
antioxidant enzymes, which help in maintaining a steady
concentration of glutathione and NADPH necessary for opti-
mal functioning of the primary antioxidant enzymes [41–44].
These enzymes require micronutrients as cofactors such as

levels exceed the antioxidant capacity of a cell. These ROS
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autism. Immune [3,17–19], autoimmune [20–22], and infec-
tious factors [8,9,23–27] have also been suggested to play role
in the etiology of autism. Increasing evidence suggests a role
of oxidative stress in the development and clinical manifesta-
tion of autism [28,29]. In fact, oxidative stress has also been
implicated in the pathogenesis of other neuropsychiatric dis-
eases, including schizophrenia [30–32] and major depressive
disorder [33], anxiety disorders such as panic disorder [34],
and obsessive-compulsive disorder [35]. It is suggested that
autism may result from an interaction between genetic, envi-
ronmental, and immunological factors, with oxidative stress
as a mechanism linking these risk factors.

1. Oxidative stress

Under normal conditions, a dynamic equilibrium exists
between the production of reactive oxygen species (ROS) and
the antioxidant capacity of the cell [36,37]. ROS includes
superoxide (O2

•−), hydroxyl, peroxyl, alkoxy, and nitric
oxide (NO) free radicals [37]. Superoxide is the first reduc-
tion product of molecular oxygen, and it is an important
source of hydroperoxides and deleterious free radicals [38].
re highly toxic and react with lipids, proteins and nucleic
cids, and lead to cell death via apoptosis or necrosis [49].

The brain is highly vulnerable to oxidative stress due to
ts limited antioxidant capacity, higher energy requirement,
nd higher amounts of lipids and iron [50]. The brain makes
p about 2% of body mass but consumes 20% of metabolic
xygen. The vast majority of energy is used by the neurons
51]. Due to the lack of glutathione-producing capacity by
eurons, the brain has a limited capacity to detoxify ROS.
herefore, neurons are the first cells to be affected by the

ncrease in ROS and shortage of antioxidants and, as a result,
re most susceptible to oxidative stress. Antioxidants are
equired for neuronal survival during the early critical period
52]. Children are more vulnerable than adults to oxidative
tress because of their naturally low glutathione levels from
onception through infancy [46,53]. The risk created by this
atural deficit in detoxification capacity in infants is increased
y the fact that some environmental factors that induce oxida-
ive stress are found at higher concentrations in developing
nfants than in their mothers, and accumulate in the placenta.
aken together, these studies suggest that the brain is highly
ulnerable to oxidative stress, particularly during the early
has been found to be associated with autism, and involve-
ment of multiple genes has been postulated [2–5]. Envi-
ronmental factors, such as mercury, lead, measles, rubella
virus, retinoic acid, maternal thalidomide, valproic acid and
alcohol use during pregnancy have been suggested to be
involved in the etiology of autism [6–10]. In addition to
behavior impairments, gastrointestinal disturbances [11–15]
and epilepsy [16] have been described in some patients with

selenium, iron, copper, zinc, and manganese for optimal cat-
alytic activity and effective antioxidative defense mechanism
[45]. Additionally, glutathione (GSH), iron-binding trans-
ferrin, copper-binding ceruloplasmin, �-tocopherol (Vita-
min E), carotenoids, and ascorbic acid (Vitamin C) are also
involved in the anti-ROS defense system [46–48]. GSH is the
most important antioxidant for detoxification and elimination
of environmental toxins. Oxidative stress occurs when ROS
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part of development that may result in neurodevelopmen-
tal disorders such as autism. In fact, recent evidence points
towards increased oxidative stress in autism.

2. Increased lipid peroxidation in autism

We have reported that lipid peroxidation is increased in the
plasma of children with autism as compared to their develop-
mentally normal, non-autistic siblings [28]. Lipid peroxida-
tion is a chain reaction between polyunsaturated fatty acids
and ROS, and it produces lipid peroxides and hydrocarbon
polymers that are both highly toxic to the cell [54]. Mal-
onyldialdehyde (MDA) is an end product of peroxidation of
polyunsaturated fatty acids and related esters, and is, there-
fore, used as a marker of lipid peroxidation [55]. The plasma
MDA contents measured by reaction with thiobarbituric acid
(TBA) were higher in 13 of 15 (87%) of autistic subjects [28].

Recent reports also indicate increased levels of other lipid
peroxidation markers in autism, thus confirming an increased
oxidative stress in autism. For instance, Zoroglu et al. [56]

have reported increased TBA-reactive substances in ery-
throcytes of patients with autism as compared to normal
controls. Ming et al. [57] reported increased excretion of
8-isoprostane-F2alpha in the urine of children with autism.
Isoprostanes are produced from the free radical oxidation
of arachidonic acid through non-enzymatic oxidation of cell
membrane lipids. In another study, the density of lipofuscin,
a matrix of oxidized lipid and cross-linked protein that forms
as a result of oxidative injury in the tissues, was observed
to be greater in cortical brain areas concerned with social
behavior and communication in autism [58].

3. Mechanism of oxidative stress in autism

The oxidative stress in autism may be caused by an
imbalance between the generation of ROS by endoge-
nous/exogenous pro-oxidants and the defense mechanism
against ROS by antioxidants. A potential mechanism of
oxidative stress in autism is shown in Fig. 1. Various factors
leading to increased oxidative stress in autism are as follows.
Fig. 1. Potential mechanism of o
xidative stress in autism.
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3.1. Alterations in antioxidant enzymes in autism

Several studies have suggested alterations in the enzymes
that play a vital role in the defense mechanism against
damage by ROS in autism. For instance, compared to con-
trols, patients with autism showed decreased activity of
glutathione peroxidase in plasma [59] and in erythrocytes
[59,60], reduced levels of total glutathione and lower redox
ratio of reduced glutathione (GSH) to oxidized glutathione
(GSSG) in plasma [61], and decreased catalase [56] and SOD
[59] activity in erythrocytes. In contrast, Sogut et al. [62]
reported unchanged plasma SOD activity and increased GPx
activity in autism.

3.2. Abnormal iron and copper metabolism in autism

Ceruloplasmin (a copper-transporting protein) and trans-
ferrin (an iron-transporting protein) are major antioxidant
proteins that are synthesized in several tissues, including
brain [47,48,63]. Ceruloplasmin inhibits the peroxidation of
membrane lipids catalyzed by metal ions, such as iron and
copper [47]. It also acts as ferroxidase and superoxide dismu-
tase, and it protects polyunsaturated fatty acids in red blood
cell membranes from active oxygen radicals [63]. Transferrin
acts as an antioxidant by reducing the concentration of free
ferrous ion [48]. Ferrous ion contributes to oxidative stress
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reduced production of GPx [66]. Recently, Pasca et al. [60]
reported higher total homocysteine levels in plasma of chil-
dren with autism as compared to control subjects. In the autis-
tic group, a strong negative correlation was noted between
homocysteine levels and glutathione peroxidase activity, sug-
gesting an association between high levels of homocysteine
and oxidative stress in autism.

Within the methionine cycle, methionine synthase, betaine
homocysteine methyltransferase, and methionine adenosyl-
transferase are all redox-sensitive enzymes that are down-
regulated by oxidative stress [61]. Recently, lower concen-
trations of methionine, S-adenosylmethionine (SAM), homo-
cysteine, cystathionine, and cysteine and higher concentra-
tions of S-adenosinehomocysteine (SAH) and adenosine have
been reported in the plasma of children with autism [61]. An
increased vulnerability to oxidative stress and a decreased
capacity for methylation (significantly lower ratio of SAM to
SAH) was, therefore, suggested in autism [61].

3.4. Increased nitric oxide in autism

NO is another toxic free radical that can react with super-
oxide anion and generate cytotoxic peroxynitrate anions
(ONOO−). NO is known to affect the development and func-
tion of the central nervous system. Its role has been implicated
in neurotransmitter release [67], neurite growth [68], synap-
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y catalyzing the conversion of hydrogen peroxide to highly
oxic hydroxyl radicals by the Fenton reaction [39]. In addi-
ion, the Fe3+-protoporphyrin (heme) group is also present in
he four protein subunits of catalase enzyme [42].

We have recently reported that the levels of ceruloplas-
in and transferrin are reduced in the serum of children with

utism as compared to their unaffected siblings [28]. The
ransferrin levels were observed to be lower in 16 of 19 (84%)
hildren with autism as compared to their unaffected siblings
28], whereas ceruloplasmin levels were lower in 13 of 19
68%) children with autism as compared to their develop-
entally normal siblings [28]. It was of particular interest to

bserve that the levels of ceruloplasmin and transferrin were
educed more effectively in children with autism who had
ost previously acquired language skills [28]. Children who
ad not lost language skills had levels similar to those seen
n the non-autistic siblings. These results suggest that there
s an altered regulation of transferrin and ceruloplasmin in a
ubset of children with autism. Such alterations may lead to
bnormal iron and copper metabolism that may play a patho-
ogical role in autism. In fact, some preliminary studies have
uggested altered serum Cu/Zn ratios in autism (reviewed in
29]).

.3. Imbalance in homocysteine and methionine
etabolism in autism

Hyperhomocysteinaemia can cause oxidative stress via a
umber of mechanisms such as auto-oxidation of homocys-
eine to form ROS [64], increased lipid peroxidation [65], and
ogenesis [69], memory and learning [70], and macrophage-
ediated cytotoxicity [71]. The expression of inducible nitric

xide synthase (iNOS) and production of NO are also known
o affect inflammatory processes [72]. The induction of iNOS
s mediated by the cytokines, namely interferon (IFN)-�,
umor necrosis factor (TNF)-� and interleukin (IL)-1� [73].

Sogut et al. [62] have reported increased NO levels in
ed blood cells of patients with autism and have suggested
hat NOS may be activated in autism. Elevated plasma lev-
ls of nitrite and nitrate in autism were also reported by
oroglu et al. [74] and Sweeten et al. [75]. A positive cor-

elation was observed between nitrates and IFN-� levels in
he autistic subjects, indicating that elevated plasma NO may
e related to IFN-� activity in autism [75]. Decreased activ-
ty of receptors sensitive to NO or increased oxidative stress
as also been reported in autism. The cholinergic receptors
nown to be sensitive to NO toxicity were decreased in the
ortex of patients with autism [76]. Additionally, treatment
ith cholinergic agonists improved behavioral abnormali-

ies in autism [77]. In other studies, gamma aminobutyric
cid (GABA) receptors that are sensitive to oxidative stress
ere reduced in the hippocampus of patients with autism

78,79].

.5. Increased xanthine oxidase in autism

XO is an endogenous pro-oxidant that produces superox-
de radicals during conversion of xanthine to uric acid [40].
ncreased XO activity has been reported in the erythrocytes
f patients with autism [56].
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3.6. Mitochondrial dysfunction and abnormal energy
metabolism in autism

Reactive oxygen and nitrogen species are generated
endogenously during oxidative metabolism and energy pro-
duction by mitochondria in the body [80]. While oxidative
phosphorylation in the mitochondria generates superoxide
anion, enzymatic oxidation of biogenic amines by MAO in
mitochondrial outer membrane produces H2O2. Damaged
mitochondria not only produce more oxidants, but mitochon-
dria are also vulnerable to oxidative stress [81]. The role of
mitochondria in apoptosis is also well recognized [82].

Several biochemical, anatomical and neuroradiographical
studies have suggested a disturbance of energy metabolism
in the brain of patients with autism [83,84]. 31P-magnetic
resonance spectroscopy showed increased membrane degra-
dation and decreased synthesis of high-energy adenosine
tri-phosphate (ATP) [85]. Filipek et al. [86] reported carni-
tine deficiency accompanied by elevations in lactate, alanine,
and ammonia levels in autism, findings suggestive of mild
mitochondrial dysfunction in autism. Other studies have also
suggested increased lactate levels [84,87], and mitochondrial
dysfunction with concomitant defects in neuronal oxidative
phosphorylation in autism [88,89].

3.7. Environmental risk factors in autism
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[23,24] and cytomegalovirus [25,26], and postnatal herpes
encephalitis [27].

3.8. Genetic susceptibility to autism

Genetic factors may also contribute in modulating the
threshold for vulnerability to oxidative stress in autism.
Recently, glyoxalase 1 (Glo 1) and glutathione reductase 1
(Gsr 1) have been reported to regulate anxiety-like behavior
in mice [94]. The proteomic studies have also identified a
single nucleotide polymorphism in glyoxalase I as an autism
susceptibility factor [95]. Additionally, a functional poly-
morphism in the monoamine oxidase A (MAOA) promoter
region has been reported to be associated with the severity
of autism [96]. All these enzymes are involved in oxidative
stress. Gsr maintains the levels of GSH, a major antioxidant
in the brain [94]. Glo 1 uses GSH as a cofactor to detoxify
cytotoxic 2-oxoaldehydes, such as methylglyoxal, that are
produced by lipid peroxidation, glycation, and degradation
of glycolytic intermediates [97]. MAOA catalyzes the oxida-
tion of amine-containing neurotransmitters, such as serotonin
and norepinephrine [36,37]. In another study, BTG3, a mem-
ber of a family of antiproliferative genes, that plays a role
in cellular differentiation and apoptosis, and is involved in
cellular responses to redox changes, has been suggested as
a susceptibility gene in autism [98]. These studies provide
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As shown in Fig. 1, prenatal or postnatal environmen-
al exposure to pro-oxidant factors such as mercury, lead,
iruses, air pollutants, toxins, thalidomide, valproic acid, and
etinoic acid may act as a trigger to increase oxidative stress
n autism. Increased body burdens of environmental toxins,
hich may induce oxidative stress, have been reported in

ome children with autism [10,90].
Recently, controversy has arisen about exposure to mer-

ury from consumption of contaminated seafood during
regnancy, dental amalgams, and the mercury-based preser-
ative thimerosal used until recently in routine childhood
accines and flu vaccines, as a risk factor for the develop-
ent of autism, especially in genetically susceptible children

7]. Mercury is a potent toxic pro-oxidant that targets the
eveloping nervous system. An association of thimerosal-
nduced neurotoxicity with glutathione depletion, and a pro-
ective benefit of GSH against mercury neurotoxicity have
een reported recently [91]. Another environmental fac-
or to receive attention has been the proposed association
etween autism and the measles-mumps-rubella (MMR) vac-
ine [8,9,15,92,93]. However, results of the studies regarding
he involvement of measles virus and/or the MMR vaccine in
he development of autism have often been inconclusive and
ontradictory.

Some studies have suggested that exposure to infec-
ious agents such as rubella or herpes virus, or toxins with
ssociated inflammation may play a role in the develop-
ent of autism [8,18,23–27]. Association has been described

etween autism and infections such as prenatal rubella virus
dditional support for the involvement of oxidative stress in
he etiology of autism.

. Potential mechanisms that may link oxidative
tress to neuronal dysfunction, clinical symptoms and
athogenesis in autism

Oxidative stress is known to be associated with premature
ging of cells and can lead to tissue inflammation, dam-
ged cell membranes, autoimmunity, and cell death [99].
ecent evidence has shown abnormalities in membrane lipid
etabolism and an imbalance in immune and inflamma-

ory responses in autism. A potential mechanism depicting
ssociation of oxidative stress in autism with membrane
ipid abnormalities, immune dysregulation, inflammatory
esponse, impaired energy metabolism, increased excitotox-
city, leading to clinical symptoms and pathology of autism
s represented in Fig. 2.

.1. Membrane lipid abnormalities in autism

Phospholipids make up the bulk of all internal and exter-
al neuronal membranes. Most neuronal membrane proteins
re embedded in or attached to membrane phospholipids.
he quaternary structure and function of proteins depends on

he precise composition of its immediate phospholipid envi-
onment. Membrane phospholipid abnormalities have been
eported in many psychiatric/behavioral disorders such as
chizophrenia, dyslexia, and dyspraxia [100,101]. Recently,
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Fig. 2. Schematic depiction of potential mechanisms that may mediate neuronal dysfunction and clinical symptoms in autism.

we have reported that the phospholipid composition of the
erythrocyte membrane is also altered in autism [102]. While
the major phospholipids, namely phosphatidylcholine and
sphingomyelin, remained unchanged, the levels of phos-
phatidylethanolamine (PE) were significantly lower and of
phosphatidylserine (PS) were higher in the children with
autism than in their unaffected siblings [102]. Further studies
showed that copper (a pro-oxidant metal) selectively oxidized
PE in liposomes containing brain lipids [103], indicating that
abnormalities in metabolism of transitional metals may have
deleterious effects in autism.

PE and PS are aminoglycerophospholipids (AGPs), i.e.
glycerophospholipids containing amino groups. These lipids
are found mainly on the cytoplasmic side of the membrane.
During oxidative stress both in vivo [104] and in vitro [55],
the normal asymmetry of biological membranes is lost, and
PS and PE are externalized. It is suggested that alterations in
the levels of AGP in autism may be due to increased oxidative
stress.

The levels of phospholipase A2 (PLA2) are increased in
the erythrocytes of patients with both regressive autism and
classical autism/Asperger’s syndrome [105]. Chromosomal
linkage studies in autism also point to a locus where the PLA2
gene (7q31) is located [3]. Therefore, this enzyme may have
an important role in the etiology of autism. PLA2 hydrolyzes
the sn-2 fatty acids of phospholipids, giving rise to polyunsat-
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form [101]. EFAs may, therefore, be particularly vulnera-
ble to oxidation when liberated by PLA2 [101]. A recent
study has shown that polyunsaturated fatty acids are lower
in the erythrocyte membranes of individuals with autism
than in normal control subjects [105]. This may be due to
increased oxidation of fatty acids in autism. In another study,
supplementation with eicosapentaenoic acid (EPA), a major
n-3 fatty acid, in patients with autism/Asperger’s syndrome
resulted in significantly reduced PLA2 concentrations than in
non-treated autistic subjects [105].

4.2. Decreased membrane fluidity in autism

Oxidative stress-induced production of lipid peroxides and
their by-products is known to lead to the loss of membrane
functions and integrity [55]. We have observed that the flu-
idity of the erythrocyte membrane of children with autism
is lower than that of unaffected siblings [106]. These results
suggest that membranes become more rigid in autism.

4.3. Immune response in autism

Several studies have suggested a link between oxida-
tive stress and the immune response [107–109]. Changes
in phagocyte functions such as adherence, chemotaxis, or
TNF-� production have been reported to be associated with
o
c
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rated fatty acids and lysophosphatidylcholine. The released
atty acids are involved in the production of prostaglandin,
hromboxane, and leukotriene.

The ease with which a fatty acid can be oxidized increases
ith the number of double bonds in the fatty acid chain. The

ssential fatty acids (EFAs) of the brain are exceptionally
usceptible to oxidation that can occur even when the fatty
cid is in membrane phospholipids. However, its oxidation
akes place at a much higher rate when the EFA is in a free
xidative stress in endotoxin-induced septic shock [110]. The
ytokines produced by immune cells are controlled by antiox-
dants with free radical-scavenging action [107]. Because
mmune cell functions are specially linked to ROS generation,
he oxidant/antioxidant balance is essential for normal func-
ioning of these cells. Increased serotonin levels have been
eported in the blood of individuals with autism [111–114].
iven that serotonin is an immunomodulator [115,116], and
ost serotonin is in the gut [114,117], its elevated levels
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might also lead to immune alterations and gut dysfunction
in a cohort of autistic subjects.

Immune abnormalities reported in autism include
decreased response to T-cell mitogens [118,119], reduced
natural killer cell activity [120], depletion of CD4+ T
helper/inducer cells [119], and increased neopterin levels in
the plasma [121] and urine [122]. An imbalance of serum
immunoglobulins and cytokines [123–129], autoimmunity to
myelin basic proteins [130] and neuronal and glial proteins
[131,132], and inappropriate antibody response to MMR vac-
cine [8,15,92,93,133] have been suggested to be involved in
the pathogenesis of autism. Studies have also shown higher
frequency of autoimmune disorders, such as rheumatoid
arthritis, lupus and hypothyroidism/Hashimoto’s thyroiditis
in families with autistic probands than in those of healthy
control subjects [20–22].

4.4. Inflammatory response in autism

A number of studies have implicated oxidative stress
as a major upstream component in the signaling cascade
involved in activation of redox-sensitive transcription factors
and pro-inflammatory gene expression leading to inflamma-
tory response [134,135]. Complement C3/C4 proteins [136]
and alpha 1-antichymotrypsin (ACT) [137] are the positive
acute phase proteins (APP) in blood that facilitate immuno-
l
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Gastrointestinal symptoms and inflammatory mucosal
pathology have been demonstrated in a cohort of children
with autism [11–15]. In this subset of autistic children,
Ashwood and Wakefield have reported increased levels of
pro-inflammatory cytokines (IFN-�, TNF-�) and reduced
levels of regulatory IL-10 cytokine in peripheral blood and
mucosal lymphocytes [129]. Furthermore, some studies have
suggested an association between gut inflammation and NO-
dependent oxidative injury [29]. It is possible that increased
NO levels in autism may also be responsible for the gastroin-
testinal abnormalities observed in subset of individuals with
autism [29]. Cytokines and products of immune activation
have also been suggested to contribute to other common fea-
tures of autism such as mood and sleep disturbance [129].
Collectively, these studies suggest that inflammatory phe-
nomenon and immune dysregulation may contribute to the
development and pathogenesis of autism.

4.5. Increased excitotoxicity in autism

Excitotoxicity has been suggested as a contributing fac-
tor to oxidative stress, as well as a result of oxidative
stress. Glutamic acid decarboxylase (GAD) that converts
glutamate to GABA, glutamine synthase, glutamate trans-
porter, and GABA receptors are vulnerable to oxidative
stress (reviewed in [29]). Increased extra-cellular glutamate
a
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ogical and inflammatory responses. Levels of C3/C4 and
CT increase in the presence of inflammation and bacterial

nfections. Transferrin, on the other hand, is a negative APP,
hose levels decrease during inflammation [48]. Our results,

n fact, suggest that the serum levels of C3/C4 and ACT are
igher in children with autism than in their unaffected siblings
138,139]. We have previously reported decreased transferrin
evels in autism [28]. The increased levels of C3/C4 and ACT
positive APP), and the decreased levels of transferrin (nega-
ive APP), in autism suggest that inflammatory reactions may
lay a role in the pathogenesis of this disease.

Vargas et al. [125] have demonstrated neuroglial and
nnate neuroimmune system activation in autism, as evi-
enced by neuroinflammation in the brains, marked activa-
ion of microglia and astroglia, as well as pro-inflammatory
rofile of cytokines in the cerebrospinal fluid of patients with
utism [125]. Cytokines and chemokines are known to play
mportant roles as mediators of inflammatory reactions in
he central nervous system, and in the neuronal-neuroglial
nteractions. Recently, Molloy et al. have shown increased
ctivation of both type 1 and 2 helper T cells (Th1, Th2)
rms of the adaptive immune system, with a Th2 predom-
nance [128]. Levels of Th2 cytokines (IL-2, IL-4, IL-5,
L-13), and Th1 cytokine IFN-� were higher without the
ompensatory increase in the regulatory cytokine IL-10 in
eripheral blood mononuclear cells (PMNC) of children with
utism than controls [128]. In other studies, IFN-�, TNF-

and IL-�, cytokines known to be involved in production
f NO, were increased in PMNC from children with autism
126,127].
nd reduced GABA are known to increase excitotoxicity. In
utism, reduced GAD [140], higher plasma glutamate and
educed glutamine [141] have been reported. These findings
re suggestive of increased excitotoxicity in autism.

. Potential antioxidant therapy in autism

Several double-blind, placebo-controlled therapeutic tri-
ls of the use of potent antioxidants such as Vitamin C,
arnosine, zinc, reduced glutathione, fish oil (rich in EPA),
elatonin and Vitamin B6 in combination with magnesium in

utism are ongoing [29]. In double-blind, placebo-controlled
linical trials, treatment with high dose Vitamin C [142] or
arnosine [143] or combined Vitamin B6 and magnesium
144,145] improved the behavior of individuals with autism.
dditionally, melatonin has been reported to be useful in the

reatment of sleep disorders in autism [146].

. Conclusion

Extensive evidence suggests increased oxidative stress in
utism with likely contributions from environment, genetic
nd immunological factors. Increased oxidative stress in
utism may be due to (a) increased production of endoge-
ous pro-oxidants (such as NO, xanthine oxidase, homocys-
eine) or environmental pro-oxidants, or (b) deficiencies of
ntioxidants (ceruloplasmin, transferrin, SOD, GPx, catalase,
educed glutathione), or (c) both. Reduced levels of serum
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ceruloplasmin (a copper-transport protein) and transferrin
(an iron-transport protein) in autism suggest that metabolism
of iron and copper (pro-oxidant components of oxidative
stress) may be abnormal in autism. Increased oxidative stress
may lead to membrane lipid abnormalities, mitochondrial
dysfunction, excitotoxicity, inflammation, and immune dys-
regulation in autism. These abnormalities might contribute to
behavioral abnormalities, sleep disorder, and gastrointestinal
disturbances in autism. Preliminary results of some of clin-
ical trials have suggested improved behavior in individuals
with autism who receive antioxidant therapy.
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